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Abstrad We consider the classical Liouville field theory on the Riemann surfam with h > 1 
genus. In terms of the unifonnimion theorem of the Riemann surface, we show explicitly the 
classical exchange algebra (a) for the chiral componene of the Liouville field. We find ulat 
this classical exchange algebra h just the same as that on a Riemann sphere with 2h punctures. 

The Liouville theory has attracted much attention over a long time. Early interest in it 
rests mainly on the uniformization theory of the two-dimensional Riemann sphere [1,2]. 
Recently, much attention has again been paid to the classical and quantum Liouville theory 
[3], since this theory plays an important role in string theory (ST), ZD quantum gravity 
(QG) and conformal field theory (m), and is related to quantum groups. The structure 
of the Poisson bracket algebras or classical exchange algebra (CEA) of Liouville theory on 
a cylinder has already been explored by Gervais and Neveu and others [4,5]. In order 
to match the study of ST, QG and CFT, it is necessary to find out the properties of the 
exchange algebraic structure for the classical Liouville theory on Riemann surfaces. In [6], 
we have mainly studied the classical and quantum Liou@Ue theory on the Riemann sphere 
with n t 3 punctures and we have obtained some interesting results. In this letter, we will 
generalize the classical exchange algebra in 161 to the case of the Riemann surface with 
h P 1 genus. We will review the problem of uniformization of the Riemann surface, and 
study monodromy group and exchange algebra. Finally, we will give some conclusions and 
remarks. 

A marked Riemann surface of genus h > 1 is a compact Riemann surface X with 
xo E X taken as fixed, together with a choice of a set of generators ai, @i (i = 1, . . . , h)  of 
fundamental group q ( X ,  XO), and these generators satisfy the relation 

A dissection of X can be performed by cutting off X along 2h homology cycles starting 
from the point XO. The result is a planar polygon in a subregion of the (extended) complex 

t This work is supposed by the Natural Science Foundation of China. 
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plane. The reverse procedure of dissection, which identifies edges of the polygon by the 
prescribed generators ai. pi, is what the famous uniformization theorem amounts to. The 
mathematically rigorous way of uniformizing a surface is to take a covering space 52 and 
a set of covering maps. Generally speaking, there are two ways of unifonnization, which 
correspond to the Fuchsian uniformization and the Schottky uniformization. Io this letter, 
we choose the Fuchsim uniformization 

The Fuchsian uniformization is defined as a set of covering maps ~ r r  : H +. X, or in 
other words X = H/ r, where H = (z E C I I,,,.? z 0) is the upper half plane and its 
automorphism group r c PSL(2, R )  is a strictly hyperbolic Fuchsian group (r acts on H 
by linear fractional transformation) and r is isomorphic to the fundamental group HI (X, xg) 
of X. Denoting by Ai, Bi (i = 1, . . . , h) the generators of r correspndmg to the elements 
at, pi (i = 1,. . . , h) E m ( X ,  XO), obviously 

II:=,A;'B;~A,B~ = 1. (2) 

The group r with the distinguished system of generators Ai, Bi is called the marked 
Fuchsian group corresponding to the marked Riemann surface ( X ,  ai, pi). 

We start with Liouville's action on a compact Riemann surface X of h t 1 genus [3] .  

whose equation of motion is given by 

Here 8, which depends only on 3h - 3 complex moduli parameters of Riemann surfaces, 
is related to a general metric g on Riemann surface as 

2 n A  g = e  g. 

Their curvatures are then related by 

&Rg = A R g  + &Ap.  (3 
On any compact Riemann surface ;Y, there exists a constant negative curvatllre -pz, so 
equation (5) can reduce to an equation for a function U($) that Weyl rescales a given metric 
8 to constant curvature g 

(6) 

If we take U = aoQ and let aoko = 1, then equation (6) coincides with the Liouville 
equation (4). 

We may always take a conformal flat metric l d y  on the Riemann surface, such that 

A p  + Ri + p2e2" = 0. 

a&,- + e& = o U) 
where we have taken p2 = 1. If we take cue = ;, by taking a conformal flat metric, we can 
get the following equation from (4) 

a&+ + k* = 0. (8) 
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The corresponding momentum-aergy tensor of the Liouville field is 

T ( @ )  = ad,@ - (9) 

If we choose e* as a (1, 1)-form on the Riemann surface, then the form of this equation is 
independent of the choice of local coordinate 171. For the complex atlas on X:(U,, 0,) -+ 
(Up, up) with holomorphic coordinate change w. = f,p(wp), equation (8) will not change 
its form if 

@ p ( o p )  = @u(fp(op)) + 1% If&9(op)12. (10) 

We can consider it as the KMer form of a metric on X if e* is regular. It is possible to 
find the solution of (8 )  such that e* is a (1,ljform from the viewpoint of uniformization. 

According to the Fuchsian uniformization, we can define a conformal map between the 
M f  upper plane and Riemann surface X 

Y C ~ : H - + X  

so that n p ( z )  = w and nr(rz) = m ( z ) ;  o E X, z E H, here r is a strictly hyperbolic 
Fuchsian group. The z~'(o) is a collection of the local univalent linearly polymorphic 
function (which means this function is a locally Schlicht and locally meromorphic function 
which transforms linear fractionally under the fundamental group) on X. 

Using the n;'(o), we can construct properly the solution of (7) or (8): 

(11) 

We find that 

D($) = T(*) (12) 

where D ( f )  = (f"'/f') - ;(f"/f')2 is the Schwarzian derivative. After defining the 
projective sbucture on X, the function ~ 6 :  on Chart U, c X is related to rr6; on Chart 
Up c X by 

, .  

This means that the collection { H F ~ J  is a section of a flat PSL(2, R) bundle on X. It is 
easy to prove that the solution (11) is a ( l , l ) - f m  and it is invariant when j?F;(m) is 
changed under the h e a r  fradonal transformation. 

It is well known that the uniformization problem of the Riemann surface is related to 
the Fuchsian equation: 

where e&) is related to 3h - 3 accessory parameters of the Fuchsian uniformization of 
X and it is transformed as the Schwanian derivation as the local chart is changed. q is 
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understood as a (multi-valued) differential on X of order -4. It makes sense to speak of 
solutions of the Fuchsian equation defined globally on a Riemann surface X, 

&@? + iQ , (P)q (P)  = 0 
dP2 

for all points P E X. These are topologically inequivalent solutions indexed by U homology 
bases of X. It was proved in [8] that such solutions depend on the parameters of monodromy 
group. 

Q,(oJ) can be realized as V(z,?). In this case, z,? = q2fq1, where ql and 72 are two 
linearly independent solutions of (13). As a conclusion, the solution * of (8) is constructed 
in such a way that it also depends on the 3h - 3 accessory parameters. The relations 
between accessory parameters and moduli parameters are very complicated, but they have 
been discussed in the mathematical literature [Z]. In this sense we may think that the 
solution (1 1) in fact includes information about the global property of the Riemann surface. 

Using the characteristics of the meromorphic differential on the Riemann surface [9], 
we introduce the local coordinate (U, r). The Liouville equation can be written as 

quo - *rr - ze* = 0. (15) 

From equation (U), we get 

(16) 

Starting from the Liouville action, we can get the canonical conjugate momentum of the 
Liouville field x = S S / I Q  = & and it satisfies the Poisson bracket 

I 2  D ( z 3  = & - = ;*ob. + + ;*zr - two + *$. 

{u(u), u(u’)l = -$”’(U - U ’ )  + $(ao - a,.)u(+yu -U’)  (18) 

where 

U=’H+P=-ID(nr-1) ~ = ~ z  1 2  +&+~+~e*--*o. ,  p =  g r ~ o - h  I 
2 8 4 U. 

The U plays the role of Liouville energy-momentum tensor; in other words, this system is 
integrable, and (18) can be regarded as the realization of V i o r o  algebra in the classical 
case. Let 

A=ZF’ SK=-!ja,logA, P=-ilogA., K 2 + K . , = U ( u ) .  

M e r  some calculation, we find 

{K(u), K(u‘)) = t ( a o  - a,,)s(U - U ‘ )  

{ P ( u ) ,  P(u’)) = -;&(U -U‘)  (19) 

{A(u), A(u’)] = %&(U - u’)(A(u) - A(u’))* + 6(A2(u) - A’(U’)) 
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where &(U - U’) is a signal function. To solve the Fuchsian equation (or Schrdinger 
equation with zero eigenvalue) 

we get q1 = 1/&. qz =‘AI&, A = q2/q1. By (19). we can obtain the Poisson bracket 
of ni (i = 1,Z) 

{ ~ i ( u ) *  qj(0’)1= $tl~(u)tlr(d (21) 

where i, j ,  k ,  1 = 1 , 2  and S; = -t[r+O(u -U ’ )  + r-€J(u’ -U)][$ and O(u) is the step 
function, the 4 x 4 matrices r+ are the solutions of the classical Y-B equation and can be 
expressed by the generators of the Lie algebra sl(2, r): 

W e  h o w  that the projective moncdromy group M related to Fuchsian equation (20) belongs 
to PSL(2, R). Let {S i } ,  i = 1, ... ,2h  be the set of linear fractional transformations, 
Si E M, then 

We find that if the elements of ma!xix Si is real, Liouville field @(P) is periodic for a 
closed path CA around any genus (there are two different path per genus) on X when the 
analytic continuation of a pair of solution ql and qz around CA results in a pair of new 
solutions q t  and q;. and 

(f ) = (;;) . 

That the Liouville field @(U) and its conjugate n(u) are smooth and singlevalued around 
any genus on X enables us to make the following assumptions: 

[ @ ( p ) v  n(9‘)) = {‘#(p +CA)> n(p’ +CA)) = A(p - P’) (23) 

and if we assume this transformation becomes a group, then 

{ @ ( P ) , ~ ( P ‘ ) ) = { @ ( P + C A + C , ) , ~ ( P ’ + C A + C , ) ] = A ( P  - P‘) (24) 

where P, P‘ E C, and C, is the level curve, and A ( P  - P’) is the delta function on C,. 
In terms of (23) and (24), we can generalize (21) to 
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where i, j , k , l =  1,2; A , p  = 1, ..., 2h and 

From (25) and (26), we can get the following Poisson brackets 

the Jacobi identity will be satisfied at the same time. By the non-trivial properties shown in 
(28) of the elements of monodromy matrices, we may consider that all of the Zh solutions 
&P), i = 1.2; A = 1, .  . . , Zh, are independent. 

After some calculation, the same Poisson bracket for &P), as in the punctured sphere 
case, is found to be 

(31) I r l m ,  VP(P’)l = -1 16&(P - P’)I~$(P)v:(P’)  - v:(P)vP(P>I 

{V:(p), V W ) I  = &E(P - P’)[V:mV;(P‘) - 2rl;(P)V:(P’)l- iV”’) 
{ V m ,  V W ”  = +(P - “V;(P)rl;(P’) - 2rl;(m;(p’)l+ i d ( P ) & P ’ ) .  

where i = 1,2, and 

(32) 

One can check that equations (31), (32) coincide with (21) if A = p. We arrange q?, 
i = 1.2.A = 1,. .., 2h -2, into avector 

WP) = (V;(P). V m .  Vt(P). Vi(P),  . . . * $-z(P).  vY-Z(P)) 
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and the Poisson brackets can be written in the standard form 

[Vl(P) ,  @Ym(P'))  = -$ C[(R+)l: 'O(P - P') + (R-)::'O(P' - P)lYp(P) @ Wmr(P') 
I'P' 

(33) 

(i) when I ,  m are both odd or even , 

(ii) when 1 is odd and m is even 

(iii) when 1 is even and m is odd 

(R+)i: = - s S I  1 I' 6, m' - 78, 1 I - I  am+, m' (R-)I""' - & f 6 d  - I8 m 8 m" - -8 I 1-1 6 m' , ,  
im - 4 I m z I' I z I' m+l (36) 

and R+ - R- = Cas% - %AI=@=, where Cz@% is the Casimir operator of SL(Zk, R) @ 
SL(2, R), and I=@= is the unity matrix (k = 2h - 2). It shows that this exchange matrix 
is independent of the parameters of the monodromy group. This matrix is related to the 
symmefxy of the Lie group SL(n)  in a non-trivial manner, and is the same as the matrix 
161 which dominates the CEA of the Liouville field on the Riemann sphere with n punctures 
when n = 2h. This shows that the exchange matrix of the Liouville field on the Riemann 
surface depends only on the numbers of non-homotopic path. 

In this letter, we have discussed the relation between the solutions of the Fuchsian 
equation and the solution of the Liouville equation, as well as the monodromy group on 
the Riemann surface with h z 1 genus. We show explicitly the exchange algebra for the 
ch id  components of the Liouville field, and find that thii exchange algebra is just the same 
as the case of a Riemann sphere with 2h punctures [6]. This result is very interesting, 
because it means the exchange algebra is only related to the topological invariant quantity 
of Riemann surface. Are there other forms of Poisson brackets of monodromy group 
parameters? It is already known that there exists the sc-called dressing symmetry in many 
nonlinear integrable systems, such as Liouville field theory [IO, 1 I]. It is interesting to ask 
what is the relation between dressing symmehy and our monodromy transformation in the 
general case of SA E PSL(2,  C)? Finally, the quantization of Liouville field theory on 
high-genus Riemann surfaces should be studied further. We will discuss these problems 
elsewhere. 

The authors (Z M Sheng and J M Shen) would like to thank Professor Rong Wang, Professor 
H Y Guo, Professor Y G Gong end I lr  You-quan Li for useful discussions and helpful 
comments. Z H Wang is obliged to Professors D Amati, L Bonora and R Iengo for their 
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